Common Core Support Coach

TARGET

Foundational Mathematics 1

Home-School Connection

triumphlearning™ Coach® Support Coach™
Welcome to the Home-School Connection!

We want you to see examples of the mathematics that your child is studying in school this year.

The program is based on a new course of study called Common Core State Standards. It is new not only in your district but in almost every state in the country. Many lessons may look just like earlier ones, but there are changes taking place in the way math is taught and learned. Two of the big changes include greater emphasis on understanding basic concepts and on solving problems.

In Kindergarten and in Grades 1 and 2: Math Begins Early. From the beginning, it is crucial for children to be grounded in important fundamental concepts. This booklet gives you an idea of the changes and a chance to see what is in your child’s math program. Take a look at the questions your child is asked. Each page shows a question or two from each lesson of the program.

Here is what you can do:

• Find out what lesson your child is working on in school.
• Look at the question from that lesson.
• Go over this question—your child will show you how to answer the question, or
• Help with finding the answer.
Contents

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1</td>
<td>Count and Write Two-Digit Numbers</td>
<td>4</td>
</tr>
<tr>
<td>Lesson 2</td>
<td>Count to 120</td>
<td>5</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Place Value</td>
<td>6</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Compare Numbers</td>
<td>7</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>Compare and Order Lengths</td>
<td>8</td>
</tr>
<tr>
<td>Lesson 6</td>
<td>Count On</td>
<td>9</td>
</tr>
<tr>
<td>Lesson 7</td>
<td>Understand the Equal Sign</td>
<td>10</td>
</tr>
<tr>
<td>Lesson 8</td>
<td>Relate Addition and Subtraction</td>
<td>11</td>
</tr>
<tr>
<td>Lesson 9</td>
<td>Missing Numbers in Equations</td>
<td>12</td>
</tr>
<tr>
<td>Lesson 10</td>
<td>Addition Facts to 10</td>
<td>13</td>
</tr>
<tr>
<td>Lesson 11</td>
<td>Add by Putting Together and Adding To</td>
<td>14</td>
</tr>
<tr>
<td>Lesson 12</td>
<td>Subtract by Taking Away and Taking Apart</td>
<td>15</td>
</tr>
<tr>
<td>Lesson 13</td>
<td>Solve Comparison Addition and Subtraction Problems</td>
<td>16</td>
</tr>
<tr>
<td>Lesson 14</td>
<td>Addition Facts within 20</td>
<td>17</td>
</tr>
<tr>
<td>Lesson 15</td>
<td>Add Three Numbers</td>
<td>18</td>
</tr>
<tr>
<td>Lesson 16</td>
<td>Subtraction Facts within 20</td>
<td>19</td>
</tr>
<tr>
<td>Lesson 17</td>
<td>Add a 1-Digit to a 2-Digit Number</td>
<td>20</td>
</tr>
<tr>
<td>Lesson 18</td>
<td>10 More and 10 Less</td>
<td>21</td>
</tr>
<tr>
<td>Lesson 19</td>
<td>Subtract 10s</td>
<td>22</td>
</tr>
<tr>
<td>Lesson 20</td>
<td>Add 10s</td>
<td>23</td>
</tr>
</tbody>
</table>

Glossary ... 24
Answers ... 27
Count and Write Two-Digit Numbers

We learned how to count and show two-digit numbers. We learned that two-digit numbers are made of tens and ones.

Let’s work together to show 18 three ways.

Draw a group of ten and ones. Circle the group of ten.

Use ten frames.

Use a tens-ones table.

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Count to 120

We learned to count to 120.
Let’s make our own number chart to 120.
Write the missing numbers in the chart.
Let’s find out what the ⭐ and the ❤️ stand for.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>

The ⭐ stands for ______.
The ❤️ stands for ______.
Place Value

We learned to count groups of 10 to make counting easier. We learned that when there are extras, we count by 10s and then count the extras by 1s.

Let's work together to count the number of ▲.

_______ groups of 10 ▲
_______ extra ▲
_______ ▲ in all
We learned how to compare numbers as being greater than, equal to, or less than each other. We learned that when we compare, we look at the tens place first, and if they are the same, then we look at the ones.

Let’s work together to compare numbers between 1 through 99. We both think of a number. Then we write the numbers in the spaces. Write either $>$, $=$, or $<$ to compare.

Draw models of each number to prove that you are correct.
We learned how to measure items using cubes. We learned that the end of the item needs to be even with the end of the starting cube so that we can get an accurate measure.

Let’s work together to find two items that measure as long as the cubes shown.
We learned how to count on to find the totals of two groups of numbers. We learned that when we count on, we start with the greater number and then count forward from there.

Let’s work together to count on to find the totals of two numbers.

Count on to find the total of 16 and 2. Use numbers or draw pictures to show how you count on. Complete the sentence below.

16 and 2 is _______ total.
We learned that the equal sign means that both sides are the same value. When we see the equal sign, both sides must have the same value.

Let’s work together to make both sides of the equation equal.

Write an expression that makes both sides equal. Draw a model to show that both sides are equal.

\[15 + 4 = ______ \]

\[15 + 4 = ______ \text{ and this is true.} \]
We learned that we can use addition to help us solve subtraction problems. We use related addition facts to solve subtraction equations. Let’s review together. Start by reading the story and creating a subtraction equation.

Kipper had 9 dog bones in a box. He buried 7 in the yard. How many bones are left in the box?

Subtraction equation: $9 - 7 = \square$

Think about addition to solve: $7 + \square = 9$

We create a number bond:

Solve the addition equation:

$7 + \square = 9$

Solve the original subtraction equation:

$9 - 7 = \square$

Use addition to solve a subtraction equation.

$10 - 6 = \square$

Think about addition to solve: $6 + \square = 10$

Create a number bond:

Solve the addition equation:

$6 + \square = 10$

Solve the original subtraction equation:

$10 - 6 = \square$
We learned to find missing numbers in equations. We count on from a number to do this. Let’s review together. Start by finding the missing number in this equation.

Count on. $6 + \square = 10$

What is the first number you say? ______

What is the last number you say? ______

How many numbers did you say? ______

What number is missing from the equation? ______

$6 + \square = 10$

Draw or write a story problem to tell about the equation. Then solve for the missing number.

$7 + \square = 15$

$7 + \square = 15$
Addition Facts to 10

We learned to add facts to 10 in different ways. We learned that you can add numbers in any order and the sum will be the same. Let’s work together to add two different numbers two ways.

Choose two different numbers 5 or less.

______ and ______

Add the numbers two ways.

______ + ______ = ______

______ + ______ = ______
Add by Putting Together and Adding To

We learned to add by putting two parts together to find the total and to find the missing part by adding on to get to the total. We learned that we can use models to show what is happening in the addition problem.

Let’s work together to find the missing part by counting up.

There are 15 birds in the cage. 7 are yellow. The rest are red. How many birds are red?

Fill in the part and the total.

<table>
<thead>
<tr>
<th>Part</th>
<th>Part</th>
<th>Whole</th>
</tr>
</thead>
</table>

Write the equation.

\[\underline{7} + \underline{\text{ }} = \underline{\text{ }} \]

Use circles to represent birds. Draw the total birds. Shade the number of yellow birds.

Count up the circles that are not shaded. Complete the equation.

\[\underline{\text{ }} + \underline{\text{ }} = \underline{\text{ }} \]

\[\underline{\text{ }} \text{ birds} \]
We learned to subtract to solve taking away and taking apart word problems. We learned that we can use models, a drawing, or a number line to solve a problem.

Let’s work together to solve this problem.

Use ones models or a drawing.

There are 17 ladybugs.

Some ladybugs fly away.

Fill in how many ladybugs fly away with a number less than 15.

_______ ladybugs fly away.

How many ladybugs are left?

17 − _______ = _______

There are _______ ladybugs left.
We learned to solve comparison problems. We used bar models to show the numbers. Then we added or subtracted to solve the problems. Let’s work together to solve this comparison problem.

Eli read 9 books.

Ana read 14 books.

How many more books did Ana read than Eli?

Write an equation.

\[\text{Ana} - \text{Eli} = \]

Make a bar model.

\[\text{Ana} \]

\[\text{Eli} \]

Subtract 14 - 9 to find how many more.

\[14 - 9 = \]

Ana read ______ more books than Eli.
We learned different strategies for adding numbers within 20. We learned to use a ten frame and then make a ten strategy to add. Let’s review how to use a ten frame and how to make a ten.

Add 7 + 11.

Fill in ten frames.

Write the equations.

Make a ten.

\[
\begin{align*}
_ _ _ _ + _ _ _ _ &= _ \\
_ _ _ _ + _ _ _ _ + _ _ _ _ &= _ \\
_ _ _ _ + _ _ _ _ &= _ _ _ _
\end{align*}
\]
Add Three Numbers

We learned to solve word problems involving adding three numbers. We learned we could begin by making a ten, using a fact we know, or adding the first two numbers.

Let’s work together to solve this problem.

Fill in three numbers less than 10.

Joy has ______ green blocks and ______ red blocks.

Her friend gives her ______ more blocks.

How many blocks does she have now?

_______ + _______ + _______ = _______

Joy has ______ blocks.
We learned how to solve subtraction facts within 20. We used a strategy where we subtracted in two-steps: once to get to 10 and then to find the answer. To do this, we first had to break apart the number to subtract into two parts. Let's work together to solve this subtraction problem.

Find $13 - 7$. Show all the steps you use to do this.

I break apart a number to help get to 10.

This is how:

I subtract to get to the 10:

I subtract to find the answer.

$13 - 7 = \underline{5}$
Add a 1-Digit to a 2-Digit Number

We learned to make jumps on a number line to help us add. We found the first number on the line. From there we made jumps that show the second number. Let’s review how to use the number line to add together.

Add. $43 + 8 = \underline{51}$

Start at 43 on the number line.

What is the next ten? ______

Draw a big jump from 43 to 50.

How many numbers do you jump so far? ______ numbers

Draw a small jump from 50 to 51.

How many numbers do you jump in all? ______ numbers.

Why do you jump 8? __________________________

Where do you land? ______

$43 + 8 = \underline{51}$
10 More and 10 Less

We learned to find 10 more and 10 less than a given two-digit number. We learned that first we should find the tens digit and then add 1 ten to find 10 more or subtract 1 ten to find 10 less. Let’s work together to solve this problem.

Fill in a two-digit number greater than 11.

Find 10 less than ________.

10 less than ________ is ________.

Draw a model of your number and 10 less than your number.
Subtract 10s

We learned how to subtract a group of tens from another group of tens. We used tens to model the subtraction, first shown with tens models and then by drawing tens. We then crossed out the tens to show the subtraction, and counted the number of tens that were left. Let’s work together to solve this subtraction equation.

Subtract 90 – 30. Show all the steps you use to do this.

I model the number 90 by drawing tens. This is how:

I subtract 30 by crossing out tens.

I look at the tens left and find the answer.

90 – 30 = _______
Add 10s

We learned to add a decade number such as 10, 20, 30… to a two-digit number. We learned that first we should find the tens digit for each number and then add the tens digits to find how many tens are in the answer. We also learned that the ones digit from the starting number stays the same.

Let’s work together to solve this problem.

Fill in with a two-digit number less than 50.

Explain how you solved.

\[
____ + 50 = ____ \\
____ + 50 = ____ \\
\]
Glossary

add (addition) to find how many in all (Lesson 7)

\[3 + 2 = 5\]

break apart to show the tens and ones in a number. This can also be done to show the addends that make up a number. (Lesson 16)

Break apart 23.

\[
\begin{array}{c}
\ \ \ \ 20 \\
\text{+} \\
\ \ \ \ 3
\end{array}
\]

Break apart 9.

\[9 = 6 + 3\]

count on starting from any number and counting forward to another number. This method is used for addition. (Lessons 6, 15)

\[
\begin{array}{c}
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10
\end{array}
\]

5 + 3. Start at 5 and count on 3 to find the sum. The sum is 8.

equal to numbers that have the same value are equal to each other (Lesson 4)

\[2 + 3 \text{ is equal to } 5.\]

\[2 + 3 = 5\]

\[4 + 3 \text{ is equal to } 3 + 4.\]

\[4 + 3 = 3 + 4\]

equation a number sentence with an equal sign (Lesson 7)

\[2 + 4 = 6\]

\[7 - 2 = 5\]
false incorrect. An equation that is false has different values on both sides of the equal sign. (Lesson 9)

\[2 + 2 = 3 \] is a false equation.

fewer less than (Lesson 13)

3 is fewer than 5.

greater than more than. The symbol \(> \) means “greater than.” (Lesson 4)

9 is greater than 4.

\[9 > 4 \]

less than fewer than. The symbol \(< \) means “less than.” (Lesson 4)

3 is less than 8.

\[3 < 8 \]

longer having a greater length (Lesson 5)

The row of red cubes is longer than the row of blue cubes.

more a greater amount (Lesson 13)

There are more red dots than green dots.

part in an addition problem, the two numbers that are put together to make a whole (Lesson 12)

There are 4 green apples and 2 red apples in a bag. How many apples are in the bag?

The two parts of the addition problem are 4 and 2.

\[4 + 2 = \]

shorter having less length (Lesson 5)

The row of blue cubes is shorter than the row of red cubes.

subtract (subtraction) to find how many are left (Lesson 7)
take away to take a value from a greater value (Lesson 12)

ten frame a tool to keep track of counting and making a ten (Lesson 1)

tens-ones table a table that shows the value of the tens place and the value of the ones place (Lesson 1)

true correct. An equation that is true has the same value on both sides of the equal sign. (Lesson 9)

2 + 1 = 3 is a true equation.

whole in an addition problem, the whole is the result of 2 parts being put together (Lesson 12)

There are 6 apples in a bag. 4 of the apples are green and the rest are red.

The whole of the addition problem is 6.

6 = 4 + ___
Lesson 1

```
<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
```
Lesson 2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

The ⭐️ stands for 88.

The ❤️ stands for 106.
Lesson 3

8 groups of 10 △
6 extra △
86 △ in all

Lesson 4

Answers will vary. Parent/guardian and the child choose numbers between 1 through 99 and compare.

Lesson 5

Answers will vary. Parent/guardian and the child choose household items that are 6 linking cubes long.

Lesson 6

Drawings will vary. Make sure that the total shown is 18. Look to see that the child started with the greater number of 16, and counted on 2, instead of starting with 2 and counting on 16.

16 and 2 is 18 total.
Lesson 7

Drawings will vary. Ensure that the child’s drawings show 19 objects on both sides of the equal sign. Some expressions could be: $4 + 15$, $17 + 2$, $18 + 1$, and so on. Possible response: $15 + 4 = 17 + 2$ and that is true.

Lesson 8

$7 + 2 = 9$

$9 - 7 = 2$

$6 + 4 = 10$

$10 - 6 = 4$
Lesson 9

What is the first number you say?
7

What is the last number you say?
10

How many numbers did you say?
4

What number is missing from the equation?
4

6 + 4 = 10

Drawings or stories will vary. Make sure that the child counts on from 7 to get to 15.

7 + 8 = 15

Lesson 10

Check that two different numbers are used and the correct sum is given. Below should be the same numbers in reverse order. Answers will vary. Sample answer below.

4 + 3 = 7
3 + 4 = 7
Lesson 11

<table>
<thead>
<tr>
<th>Part</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

$7 + \square = 15$

7 + 8 = 15

15 birds

Lesson 12

Answers will vary but should be less than 15.

Sample answer:

5 ladybugs fly away.

How many ladybugs are left? $17 - 5 = 12$

There are 12 ladybugs left.
Lesson 13

14 - 9 = \[
\begin{array}{c|c}
\text{Ana} & 14 \\
\text{Eli} & 9 \quad 5 \\
\end{array}
\]

14 - 9 = 5

Ana read 5 more books than Eli.

Lesson 14

\[
\begin{array}{c}
\ \ \ \ \ \ \ 7 + \ 11 = \\
\downarrow \quad \quad \quad \quad \ \ \\
7 + 3 + 8 = \\
\ \ \ \ \ \ \ 10 + 8 = 18
\end{array}
\]
Lesson 15

Answers will vary depending on the numbers picked. Have children discuss the method used and check their calculations as they proceed through each step.

Lesson 16

I break apart the 7.

\[\begin{array}{c}
\uparrow \\
3 \text{ and } 4
\end{array} \]

I subtract to get to the 10.

\[13 - 3 = 10 \]

I subtract to find the answer.

\[10 - 4 = 6 \]

\[13 - 7 = 6 \]
Lesson 17

Possible responses: To show adding 8. To show the second number.

Lesson 18

Answers will vary, dependent on the number chosen by children.
Lesson 19

Sample answer:

\[90 - 30 = 60 \]

Lesson 20

Possible answer: \(47 + 50 = 97 \).

I solved by adding the tens \((4 + 5) \) to get 9, and then keeping the 7 since there are no other ones being added.