TARGET Foundational Mathematics 2
Home-School Connection
Welcome to the Home-School Connection!

We want you to see examples of the mathematics that your child is studying in school this year.

The program is based on a new course of study called Common Core State Standards. It is new not only in your district but in almost every state in the country. Many lessons may look just like earlier ones, but there are changes taking place in the way math is taught and learned. Two of the big changes include greater emphasis on understanding basic concepts and on solving problems.

In Kindergarten and in Grades 1 and 2: Math Begins Early. From the beginning, it is crucial for children to be grounded in important fundamental concepts. This booklet gives you an idea of the changes and a chance to see what is in your child’s math program. Take a look at the questions your child is asked. Each page shows a question or two from each lesson of the program.

Here is what you can do:

• Find out what lesson your child is working on in school.
• Look at the question from that lesson.
• Go over this question–your child will show you how to answer the question, or
• Help with finding the answer.
Contents

Lesson 1  Hundreds ................................................. 4
Lesson 2  Hundreds, Tens, and Ones .......................... 5
Lesson 3  Read and Write Numbers in Many Ways ........ 6
Lesson 4  Skip Count by Tens .................................... 7
Lesson 5  Skip Count by Fives .................................... 8
Lesson 6  Compare Three-Digit Numbers .................... 9
Lesson 7  Fluency with Addition and Subtraction .......... 10
Lesson 8  Addition and Subtraction Problems ............... 11
Lesson 9  Display Data ............................................ 12
Lesson 10 Two-Step Problems ................................... 13
Lesson 11 Build Fluency with Addition ....................... 14
Lesson 12 Build Fluency with Subtraction ................... 15
Lesson 13 Add up to Four Two-Digit Numbers .............. 16
Lesson 14 Dollars, Dimes, and Pennies ....................... 17
Lesson 15 Add a 10 or a 100 .................................... 18
Lesson 16 Add within 1,000 ..................................... 19
Lesson 17 Subtract 10s and 100s ............................... 20
Lesson 18 Subtract within 1,000 ............................... 21
Lesson 19 Relate Addition and Subtraction to Length .... 22
Lesson 20 Measure and Compare Lengths ................... 23

Glossary ................................................................. 24
Answers ................................................................. 26
Lesson 1

Hundreds

We learned that we can bundle 10 tens to make one hundred. We learned that counting by hundreds is similar to counting by ones.

Let’s work together to count different bundles of 10 tens that make hundreds.

Circle groups of 10 tens. Write how many hundreds.

______ groups of 10 tens

______ hundreds

Write the number.
We learned to break apart three-digit numbers into hundreds, tens, and ones.

Let's work together to break apart and model three-digit numbers.

Write the hundreds, tens, and ones for the number 266.

_______ hundreds   _______ tens   _______ ones

Write the hundreds, tens, and ones for the number shown.

_______ hundreds   _______ tens   _______ ones

Shade the models to show the number 139.
LESSON 3
Read and Write Numbers in Many Ways

We learned to read and write numbers to 1,000 in many ways. We learned that a three-digit number has hundreds, tens, and ones.

Let’s work together to show the number 387 in four ways.

Draw a model.

Write the number of hundreds, tens, and ones.

_______ hundreds + _______ tens + _______ ones

Write the expanded form.

_______ + _______ + _______

Write the number name.

________________________________________________________________

Reproducible page. © 2016 Triumph Learning, LLC
**Skip Count by Tens**

We learned how to skip count by 10s. We used number lines and dimes to learn how to skip count by 10s. Let’s count by 10s on the number chart.

Write each number as you skip count by 10s from 301 through 400.

<table>
<thead>
<tr>
<th>301</th>
<th>302</th>
<th>303</th>
<th>304</th>
<th>305</th>
<th>306</th>
<th>307</th>
<th>308</th>
<th>309</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>312</td>
<td>313</td>
<td>314</td>
<td>315</td>
<td>316</td>
<td>317</td>
<td>318</td>
<td>319</td>
</tr>
<tr>
<td>321</td>
<td>322</td>
<td>323</td>
<td>324</td>
<td>325</td>
<td>326</td>
<td>327</td>
<td>328</td>
<td>329</td>
</tr>
<tr>
<td>331</td>
<td>332</td>
<td>333</td>
<td>334</td>
<td>335</td>
<td>336</td>
<td>337</td>
<td>338</td>
<td>339</td>
</tr>
<tr>
<td>341</td>
<td>342</td>
<td>343</td>
<td>344</td>
<td>345</td>
<td>346</td>
<td>347</td>
<td>348</td>
<td>349</td>
</tr>
<tr>
<td>351</td>
<td>352</td>
<td>353</td>
<td>354</td>
<td>355</td>
<td>356</td>
<td>357</td>
<td>358</td>
<td>359</td>
</tr>
<tr>
<td>361</td>
<td>362</td>
<td>363</td>
<td>364</td>
<td>365</td>
<td>366</td>
<td>367</td>
<td>368</td>
<td>369</td>
</tr>
<tr>
<td>371</td>
<td>372</td>
<td>373</td>
<td>374</td>
<td>375</td>
<td>376</td>
<td>377</td>
<td>378</td>
<td>379</td>
</tr>
<tr>
<td>381</td>
<td>382</td>
<td>383</td>
<td>384</td>
<td>385</td>
<td>386</td>
<td>387</td>
<td>388</td>
<td>389</td>
</tr>
<tr>
<td>391</td>
<td>392</td>
<td>393</td>
<td>394</td>
<td>395</td>
<td>396</td>
<td>397</td>
<td>398</td>
<td>399</td>
</tr>
</tbody>
</table>
We learned how to skip count by 5s. We used nickels and the clock minutes to learn how to skip count by 5s. Let’s count by 5s on the chart.

Start at 55. Shade each number as you skip count by 5s through 150.

<table>
<thead>
<tr>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
</tr>
<tr>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
</tr>
</tbody>
</table>
We learned how to compare three-digit numbers using place-value charts and expanded form. Let’s work together to compare 514 and 518 using place-value charts and expanded form.

514 \( \bigcirc \) 518

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

514 = \boxed{500} + \boxed{10} + \boxed{10}

518 = \boxed{500} + \boxed{10} + \boxed{8}

Compare the hundreds. \boxed{500} hundreds \( \bigcirc \) \boxed{500} hundreds.

Compare the tens. \boxed{10} ten \( \bigcirc \) \boxed{10} ten

Compare the ones. \boxed{10} ones \( \bigcirc \) \boxed{8} ones

Compare the numbers.

514 \( \bigcirc \) 518
Fluency with Addition and Subtraction

We learned different ways to add and subtract through 20. We learned that we can model adding and subtracting. We learned how to use ten frames to add and subtract. Let’s work together to add and subtract using ten frames.

$13 - 6 = \underline{\phantom{0}}$

![Ten frame for $13 - 6$]

$7 + 8 = \underline{\phantom{0}}$

![Ten frame for $7 + 8$]
Addition and Subtraction Problems

We learned how add and subtract with word problems. Sometimes these problems need two steps to find the answer. We learned that drawing pictures or using number lines can help find the answer. Let’s work together to add and subtract with word problems.

Holly brought 45 orange slices for her soccer practice. She ate 3 orange slices before she started practice. Her teammates then ate 29 orange slices. How many orange slices are left?

**Step 1:** Holly had 45 orange slices and ate 3 orange slices.
Write an equation to show this. You can draw a picture to help.

____________________

**Step 2:** Her teammates ate 29 orange slices.
Write an equation to show this. Use the answer from Step 1 in your equation. You can use the picture you drew to help you.

____________________

How many orange slices are left?

_______ orange slices
Display Data

We learned how to solve addition problems using a picture graph. A picture graph is a graph that uses pictures to show information. Let’s work together to review how to use a picture graph. Answer the questions using the picture graph shown.

The picture graph shows the favorite desserts of 20 children.

<table>
<thead>
<tr>
<th>Favorite Dessert</th>
<th>Key: 😊 = 1 child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cookies</td>
<td>😊😊😊😊😊😊</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>😊😊😊😊😊</td>
</tr>
<tr>
<td>Pie</td>
<td>😊😊</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Complete the graph to show that the Other dessert has the same number of votes as Cookies.

Which dessert do the fewest children like? __________________________

How many children like cookies and pie?

_____ + _____ = ______

How many children like ice cream and pie?

_____ + _____ = ______
We learned that some problems take two steps.
We learned how to write equations to help us find the answer.
We can add and then add again to find the answer.
We can also add and subtract to find the answer.

Let’s write equations to find the answer.

There were 5 gray cats and 13 orange cats at a shelter. Then, some cats were adopted. There are now 9 cats left at the shelter. How many cats were adopted?

**Step 1:** How many cats were at the shelter?
What operation will you use?
Write and solve an equation.

\[
\text{_______} + \text{_______} = \text{_______} \text{ cats}
\]

**Step 2:** Some cats were adopted.
There are now 9 cats left.
What operation will you use?
Write and solve an equation.

\[
\text{_______} - \text{_______} = \text{_______} \text{ cats adopted}
\]

There were _______ cats adopted.
We learned different strategies when adding two-digit numbers. We learned how to write an addition equation with models. We also learned to make a 10 when finding the sum.

Let’s add 2 two-digit numbers. Let’s find a way to make a 10 to make adding easier.

Step 1: Write the two addends.

_______ + _______

Step 2: Can you make a 10 from the ones? yes no

Step 3: Add the tens and the ones.

_______ + _______ + _______ + _______ = _______

The sum is _______.
We learned different ways to subtract two numbers. Let’s work together to use three different ways to subtract.

1. Subtract using the number line.

\[24 - 10 = \square\]

2. Subtract by breaking apart numbers.

\[68 - 17 = \square\]

\[68 - \square = 58\]

\[58 - \square = \square\]

\[68 - 17 = \square\]

3. Subtract using place value.

\[78 - 25 = \square\]

\[\square \text{ tens} - \square \text{ tens} = \square \text{ tens}\]

\[\square \text{ ones} - \square \text{ ones} = \square \text{ ones}\]

\[\square \text{ tens} \square \text{ ones} = \square \quad 78 - 25 = \square\]
Add up to Four Two-Digit Numbers

We learned how to add more than two numbers. Each number had two digits. Let's work together to review how to add. Show three ways to find the sum.

15 + 17 + 15 + 40 = 

15 17 15 40

__ ten __ ones __ ten __ ones __ ten __ ones __ tens __ ones

________ tens ________ ones Can you make another ten? _______

________ tens ________ ones = _______

15 + 17 + 15 + 40 = 

  15  +  15  +  _____  +  _____

_______ + _______ + _______

________ + _______ = _______
We learned to add money amounts. We used dollars, dimes, and pennies to model money amounts to help us add.

Let’s use money to model a problem.

Lucia and Val have the money shown. How much do they have in all?

Let’s add them together.

\[ \text{Lucia and Val have } \$ \text{ in all.} \]
LESSON 15

Add a 10 or a 100

We learned to add 10 or 100 to 2- and 3-digit numbers. We used mental math methods to add in our head. Let’s work together to solve this addition problem.

Find $683 + 100$. Show all the steps you use to do this.

I start with the number 683.

I count on. This is how:

$683 + 100 = \underline{783}$
Add within 1,000

We learned to add two 3-digit numbers. We used models to add and place-value charts. Let’s work together to review adding 3-digit numbers. Use the place-value chart to add the numbers.

Add 727 + 146 using the place-value chart.

1. **hundreds** | **tens** | **ones**
   +

2. Add the ones. 7 + 6 = _______ ones
   (_______ ones = _______ ten _______ ones)

3. Add the tens. 1 + 2 + 4 = _______ tens

4. Add the hundreds. 7 + 1 = _______ hundreds

5. 727 + 146 = _______

Add 481 + 265 using the place-value chart.

1. **hundreds** | **tens** | **ones**
   +

2. Add the ones. 1 + 5 = _______ ones

3. Add the tens. 8 + 6 = _______ tens
   (_______ tens = _______ hundred _______ tens)

4. Add the hundreds. 1 + 4 + 2 = _______ hundreds

5. 481 + 265 = _______
LESSON 17

Subtract 10s and 100s

We learned to subtract 10 or 100 from 3-digit numbers. We used mental math methods to subtract. We also learned to subtract using an equation. Let’s work together to solve this subtraction problem.

Find 383 − 100. Show all the steps you use to do this.

I start with the number 383.

I used mental math. Here’s how:

383 − 100 = _______
We learned to subtract within 1,000.
We learned to use place-value models to help us subtract.
We also learned how to break a ten or a hundred when there were not enough ones or tens to take away.
Let’s work together to solve this subtraction problem.

Find 856 $-$ 519. Show your work.

Are there enough ones to subtract 9 ones? yes no

Regroup 1 ten as 10 ones. Write 856 a different way.

Subtract the ones, then the tens, then the hundreds.

$856 - 519 = \underline{}$
Relate Addition and Subtraction to Length

We learned how to solve word problems using lengths and drawings of rulers. Let’s review how to use a ruler to solve a word problem.

Jamir was building a box for his mom.

His piece of wood was 14 centimeters long.

He needs a top and a bottom that are 5 centimeters long each.

Does he have enough wood to build the top and bottom?

Start at 14 centimeters.

Jump back 5 centimeters. Make a mark.

Jump back 5 more centimeters.

Is there enough wood to make the top and bottom? yes no
Measure and Compare Lengths

We learned to measure the length of objects with different kinds of tools. We also measured to find out how much longer one object is than another.

Let’s work together to review how to measure and compare objects.

Mia has 2 ribbons.

Compare the ribbons.

Measure the ribbons.

The striped ribbon is _______ centimeters long.

The dotted ribbon is _______ centimeters long.

Which is shorter? How much shorter?

Write an equation to compare.

______ ○ _______ = _______

The _______ ribbon is _______ centimeters shorter than the _______ ribbon.
Glossary

**add (addition)** to find how many in all (Lesson 7)

\[ 3 + 2 = 5 \]

**addend** a number added in an addition equation (Lesson 11)

\[ 4 + 3 = 7 \]

**centimeter** a unit of measure of length (Lesson 20)

**digit** a symbol used to show a number (Lesson 1)

\[ 283 \]

**equation** a number sentence with an equal sign (Lessons 8, 10)

\[ 2 + 4 = 6 \]

\[ 7 - 2 = 5 \]

**expanded form** a form of a number that shows the value of each digit (Lessons 3, 6)

\[ 437 = 400 + 30 + 7 \]

**feet** a unit of measure made up of 12 inches (Lesson 20)

**inch** a unit of measure of length (Lesson 19)

**length** the measure of how long an object is (Lesson 19)

**measuring tape** a measuring tool used to measure objects that are not flat or straight (Lesson 20)

**meter** a unit of measure made of 100 centimeters (Lesson 20)

**meter stick** a measuring tool used to measure objects in meters (Lesson 20)

**ones** numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are called ones (Lessons 1, 2)
**picture graph**  a graph that uses symbols to represent data  (Lesson 9)

<table>
<thead>
<tr>
<th>Cats as Pets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
</tr>
<tr>
<td>3rd</td>
</tr>
<tr>
<td>4th</td>
</tr>
<tr>
<td>5th</td>
</tr>
</tbody>
</table>

= 1 child

**place value** the value of a digit based on where it is in the number  (Lesson 6)

**place-value chart** a chart that shows the value of a digit based on where it is in the number  (Lesson 6)

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

**skip count** to count forward or backward by a number other than 1  (Lesson 4)

**subtract (subtraction)** to find how many are left  (Lesson 7)

**ten frame** a tool to keep track of counting and making a 10  (Lesson 1)

**tens** numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 are called tens  (Lessons 1, 2)

**unit** an object to measure length  (Lesson 19)

**yard** a unit of measure made up of 3 feet  (Lesson 20)

**yardstick** a measuring tool used to measure objects in yards  (Lesson 20)
**Lesson 1**

3 groups of 10 tens

3 hundreds

700

**Lesson 2**

2 hundreds 6 tens 6 ones

3 hundreds 2 tens 7 ones
Lesson 3

Sample answer:

3 hundreds + 8 tens + 7 ones

300 + 80 + 7

three hundred eighty-seven

Lesson 4

<table>
<thead>
<tr>
<th>301</th>
<th>302</th>
<th>303</th>
<th>304</th>
<th>305</th>
<th>306</th>
<th>307</th>
<th>308</th>
<th>309</th>
<th>310</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>312</td>
<td>313</td>
<td>314</td>
<td>315</td>
<td>316</td>
<td>317</td>
<td>318</td>
<td>319</td>
<td>320</td>
</tr>
<tr>
<td>321</td>
<td>322</td>
<td>323</td>
<td>324</td>
<td>325</td>
<td>326</td>
<td>327</td>
<td>328</td>
<td>329</td>
<td>330</td>
</tr>
<tr>
<td>331</td>
<td>332</td>
<td>333</td>
<td>334</td>
<td>335</td>
<td>336</td>
<td>337</td>
<td>338</td>
<td>339</td>
<td>340</td>
</tr>
<tr>
<td>341</td>
<td>342</td>
<td>343</td>
<td>344</td>
<td>345</td>
<td>346</td>
<td>347</td>
<td>348</td>
<td>349</td>
<td>350</td>
</tr>
<tr>
<td>351</td>
<td>352</td>
<td>353</td>
<td>354</td>
<td>355</td>
<td>356</td>
<td>357</td>
<td>358</td>
<td>359</td>
<td>360</td>
</tr>
<tr>
<td>361</td>
<td>362</td>
<td>363</td>
<td>364</td>
<td>365</td>
<td>366</td>
<td>367</td>
<td>368</td>
<td>369</td>
<td>370</td>
</tr>
<tr>
<td>371</td>
<td>372</td>
<td>373</td>
<td>374</td>
<td>375</td>
<td>376</td>
<td>377</td>
<td>378</td>
<td>379</td>
<td>380</td>
</tr>
<tr>
<td>381</td>
<td>382</td>
<td>383</td>
<td>384</td>
<td>385</td>
<td>386</td>
<td>387</td>
<td>388</td>
<td>389</td>
<td>390</td>
</tr>
<tr>
<td>391</td>
<td>392</td>
<td>393</td>
<td>394</td>
<td>395</td>
<td>396</td>
<td>397</td>
<td>398</td>
<td>399</td>
<td>400</td>
</tr>
</tbody>
</table>
Lesson 5

<table>
<thead>
<tr>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
</tr>
<tr>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
</tr>
</tbody>
</table>
Lesson 6

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

\[514 = 500 + 10 + 4\]

\[518 = 500 + 10 + 8\]

5 hundreds = 5 hundreds

1 ten = 1 ten

4 ones < 8 ones

\[514 < 518\]
Lesson 7

13 − 6 = 7

7 + 8 = 15

Lesson 8

Step 1: 45 − 3 = 42

Step 2: 42 − 29 = 13

13 orange slices
Lesson 9

Favorite Dessert

<table>
<thead>
<tr>
<th>Delicious Treat</th>
<th>Child Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cookies</td>
<td>😊😊😊😊😊😊😊</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>😊😊😊😊😊😊😊</td>
</tr>
<tr>
<td>Pie</td>
<td>😊😊😊😊😊</td>
</tr>
<tr>
<td>Other</td>
<td>😊😊😊😊😊😊😊</td>
</tr>
</tbody>
</table>

Key: 😊 = 1 child

pie

$6 + 3 = 9$

$5 + 3 = 8$

Lesson 10

Step 1: $5 + 13 = 18$

Step 2: $18 - 9 = 9$

There were 9 adopted cats.
Lesson 11

Step 1: Write the two addends.

\[36 + 28\]

Step 2: Can you make a 10 from the ones?

Yes.

Step 3: Add the tens and the ones.

\[30 + 20 + 10 + 4 = 64\]

The sum is 64.

Lesson 12

1. \[24 - 10 = 14\]

2. \[68 - 17 = 51\]

3. \[7\text{ tens} - 2\text{ tens} = 5\text{ tens}\]

\[8\text{ ones} - 5\text{ ones} = 3\text{ ones}\]

\[5\text{ tens} 3\text{ ones} = 53\]

\[78 - 25 = 53\]
Lesson 13

Sample answer:

\[
\begin{array}{cccc}
1 & \text{ten} & 5 & \text{ones} \\
1 & \text{ten} & 7 & \text{ones} \\
1 & \text{ten} & 5 & \text{ones} \\
4 & \text{tens} & 0 & \text{ones} \\
7 & \text{tens} & 17 & \text{ones} \\
\end{array}
\]

Can you make another ten? \textbf{yes}

\[
8 \text{ tens} \quad 7 \text{ ones} = 87
\]

\[
\begin{array}{cccc}
15 & + & 15 & + 40 & + 17 \\
30 & + & 40 & + 17 \\
70 & + & 17 & = 87
\end{array}
\]
Lesson 14

$3.17

$1.91

$3.17 + $1.91 = $5.08

$5.08

Lesson 15

Sample answer:

683, 783

683 + 100 = 783
Lesson 16

1. 

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

2. 13 ones (13 ones = 1 ten 3 ones)

3. 7 tens

4. 8 hundreds

5. 873

1. 

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

2. 6 ones

3. 14 tens (14 tens = 1 hundred 4 tens)

4. 7 hundreds

5. 746
Lesson 17

Sample answer:

383

I look at the hundreds digit in 383. It is 3.
I write a number that is 1 hundred less, which is 283.

383 \(\text{\textendash} 100 = 283\)

Lesson 18

Sample answer:

no

8 hundreds 4 tens 16 ones

16 ones \(\text{\textendash} 9\) ones = 7 ones

4 tens \(\text{\textendash} 1\) ten = 3 tens

8 hundreds \(\text{\textendash} 5\) hundreds = 3 hundreds

337
Lesson 19

Is there enough wood to make the top and bottom?  yes  no

Lesson 20

15 centimeters
9 centimeters

\[15 - 9 = 6\]

The dotted ribbon is 6 centimeters shorter than the striped ribbon.